> > Address Standardization


Address Standardization

What's happening in the EU address standardization committees?

The address-specific delivery of letters, packages and parcels forms the core of the postal infrastructure.

Address standardization is the basis for creating a single postal market in Europe, fully opening the postal market to competitors and safeguarding access to vital postal infrastructure. 


Why Do We Need a European Address Standard?

In the past, postal operators have been highly flexible about how postal items can be addressed – anything was acceptable as long as it permitted the delivery point to be sufficiently unambiguously determined.

Even today, many posts pride themselves on their ability – thanks to staff intelligence and local demographic knowledge - to deliver postal items bearing incomplete or unusual address forms.

However, with the advent of competition, increasing volumes and pressure on labor costs, automation has become not only economic, but essential. As a result, it has become increasingly vital to ensure that the vast majority of postal items are addressed in a way which can be processed automatically, without risk of misinterpretation.

Nowadays the vast majority of postal items bear printed addresses taken directly from computer databases.

These databases need to be constantly updated to reflect population mobility, the creation and suppression of delivery points and changes in their specification, such as the renaming of streets, renumbering of properties, etc.

Finally, there is a growing tendency for companies to exchange or trade address data and – with a single European Market - for companies in one country to hold the address data of organizations and individuals in other countries.

Address standardization ensures a single approach to the structuring of printed addresses.

 

An Address Standard For Europe

What’s in an address?

  • Postal services provide delivery services on a European and global basis, without the need for recipients to enter into explicit service contracts.
  • Postal addresses combine private recipient information with publicly known delivery point data.
  • Postal addresses provide the mechanism through which mailers specify the intended recipient and the means by which the postal operator can fulfil its delivery commitment.

 The European Committee for Standardisation (CEN) has taken the Universal Postal Union Standard 42, and converted it into the European address standard:

EN 14142: Postal services - Address databases

Part 1: Components of postal addresses

Part 2: Element mapping conventions, template design considerations, address templates and rendition instructions


The Structure of Standard EN 14142

The S42 international addressing standard is comprised of a generic list of address elements used in all UPU member countries, paired with country-specific templates that tell users how to transform these elements into an accurately formatted address for that country.

The address is expressed in both human and computer-languages and is ready to integrate into address formatting computer systems. 

The standard consists of two main parts:

  • Part 1 defines the individual elements that make up an address.  It also describes the hierarchy of elements and segments, and defines the languages used in the templates. 
  • Part 2 contains the actual individual templates for each country; these include instructions for correct display. 

 

Part 1

  • Segments

In S42 an address is made of four top level ‘groups’, called segments.  These are:

10           Addressee specification;

20           Mailee specification;

30           Mail recipient despatching information; and

40           Delivery point specification.

 

  • Elements

The next level down is made up of elements - these are the smallest meaningful parts of names and addresses. 

There are many different element types to cover all the different ways addresses are structured throughout the world: 

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

Organisation name

Legal status

Organisational unit

Function

Addressee role descriptor

Form of address

 Given name

Surname prefix

Surname

Name qualifier

Qualification

Mailee role descriptor

Defining authority

Postcode

Country name

Region

Town

District / sector

20

21

24

26

28

29

30

31

32

33

34


Alternative delivery service identifier

Thoroughfare

Street number or plot

Building / construction

Extension designation

Wing

Stairwell

Floor

Door

Supplementary despatch information

Supplementary delivery point data

For example, “postcode” has an element ID of 13, “district” has an ID of 17 and “surname” is 08.

Combining the segment ID and the element ID, we see that the postcode is represented as 40.13, and the surname of the addressee 10.08.


  •  Instances and parts

Sometimes an element can occur more than once in an address. 

For example, there may be several district elements required to identify the address.  This is common in the UK. 

We reference these individual occurrences of the element by designating an instance:

40.17-1     First instance of district in the address; and

40.17-2     Second instance of district in the address

Where there is only one instance, we would just use 40.17. 

Conversely, it is sometimes necessary to split a larger element into smaller parts. 

For example, the US Zip code sometimes contains two parts – the normal part (such as 60625) and an extended part (3806).  The full Zip+4 code would look like this:

“60625-3806”

We store this in two sub-elements:

40.13-0-1                     60625

40.13-0-2                     3806

Note that this is still a single instance of the postcode, and so the instance descriptor is set at 0. 

The same is often seen with the thoroughfare elements in an address. 

Frequently a delivery point exists on a smaller street which runs off a main street, and both are necessary components of the address.  Additionally, it is convenient to store the street name separately from the street type, and so we have two sub-elements for this.

 Example

We can therefore describe any part of an address using a mixture of the segment and element ID, and using instance and part identifiers where necessary. 

Here is an example: 

10.05

10.06

10.08

40.28

40.24

40.21-1-1

40.21-2-2

40.17-1-0

40.17-2-0

40.16

40.13

Form of address

Given name

Surname

Extension

Street number

Thoroughfare number

Thoroughfare type

District 1

District 2

Town

Postcode

Mr.

Joe

Black

12

Church

Street

Coombe

Pigot

Salisbury

SP5 4NA


Part 2

  • Templates

Part 2 of the EN 14142 address standard contains country-specific templates which describe how to arrange individual address elements into a postal address correct for that country.

These templates are presented in two languages.

The first, NLT (Natural Language Template), is designed to be human-readable and an aid to understanding the structure of the template.

The second language is computer-readable and contains additional information useful to software systems.  It is written in PATDL (Postal Address Template Definition Language). 

This is an XML schema which, as well as describing how to arrange the address elements, also has content pertaining to defining line components, varying trigger and logic processing for formatting the address and specific rendition instructions.

Rendition instructions in each template define functions and operations that can be performed on the individual elements.  This is done to ensure that the output from processing the template preserves the information necessary to achieve postal delivery.

 

Address Standardization: Participation & Certification

A committee of the Standards Board of the Universal Postal Union has been engaged in identifying the elements and templating addresses for several years. 

The work is undertaken together with postal personnel from the country concerned and is extremely labour intensive.

For example, in many countries there are several different “standard templates” for addresses, each containing  different elements; the address for an apartment in a large building differs from that of a single family residence, and both differ from the address of a company in an industrial park. 

To date some 38 countries have completed this work. Their work has been, or soon will be, certified by the Standards Board. 

A first group of certified countries, eleven in all, were recognized at a ceremony at the UPU in October 2010.

 

Addressing Europe - Transmitting Name & Address Data

In turn, EU standard 14142 has been adopted by the UPU as the basis for the UPU’s own standard S53.

S53 is a standard for the exchange of name and address data.

S53 supports all 4 of the following scenarios:

  • post to post - transmission of information concerning undeliverable addresses
  • mailer to post - transmission of electronic data pertaining to each piece in a mailing
  • post to mailer - dissemination of change of address information
  • mailer to mailer - name and address file to be incorporated with other similar files in a planned mailing

 Stable European standards are needed to ensure that transparent, non-discriminatory access conditions are available to elements of postal infrastructure and to services provided within the scope of the universal service.

This infrastructure and services include the postcode system, address database, post office boxes, delivery boxes, information on change of address, re-direction service and return to sender service.

The European Committee of Standardization is therefore currently considering whether to convert UPU S53 into the format of a European Standard.

 

IN BRIEF: In a single European postal market, now open to new service providers, a single standardized address format is vital to ensure cross-border interoperability. CEN has responded by adopting the UPU Standard 42 and rewriting it as European address standard EN 14142. An address standard ensures transparent, non-discriminatory access for all postal service providers. 



Top of Page

> > Address Standardization